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INTRODUCTION 
 
Almost every engineering design problem can be formulated as 
an optimisation problem. Solving an optimisation problem 
requires the computation of the global maxima or minima of 
the object function. Obviously, reaching this goal makes the 
search process complicated and the selection of an optimum 
technique critical. It is a challenge for engineers to design 
efficient and cost-effective systems without compromising the 
integrity of the system. The conventional design process 
depends upon the designer’s intuition, experience and skill. 
 
Many optimisation algorithms have been developed and 
adapted for various problems. Methods to solve the general 
optimisation problem have been studied for many years and 
considerable literature exists [1][2]. Engineering optimal 
design studies can often be cast in terms of optimisation 
problems. However, for such an approach to be worthwhile, 
designers must be content that the optimisation techniques 
employed converge fast. In this article, the author describes 
recent convergence problem studies found when applying the 
particle swarm optimisation algorithm to those optimisation 
problems often found in design. The particle swarm 
optimisation algorithm has exhibited good function 
optimisation performance. Particle swarm optimisation is an 
invented high performance optimiser that is very easy to 
understand and implement. It is similar, in some ways, to 
genetic algorithms, but requires less computational 
bookkeeping and generally only a few lines of code [3]. 
 
OPTIMUM DESIGN PROBLEM FORMULATION 
 
The aim of the optimum design course is to identify the best 
possible combination of solutions for use as design parameters 
in order to maximise or minimise an optimisation function. In 
this course, it is generally assumed that various preliminary 
analyses have been completed and a detailed design concept or 

sub-problem must be carried out. Students should bear in mind 
that a considerable number of analyses have to be performed 
before reaching this design optimisation problem stage.  
 
This must be stressed because the optimum solution will only 
be as good as the formulation. Once the problem is properly 
formulated, good software is usually available to solve it. In 
this article, the author uses optimum design software supported 
by a genetic algorithm for undergraduate students. 
 
Figure 1 shows the formulation procedure for design 
optimisation problems involving the translation of a descriptive 
statement of the problem into a well defined mathematical 
statement. 
 

 
 
Figure 1: The formulation procedure for design optimisation 
problems. 
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The detailed formulation procedure steps are as follows: 
 
• Step 1: Project/problem statement: The formulation process 

begins by developing a descriptive statement for the 
project/problem. This is usually performed by the project 
sponsor or leader. The statement describes the overall 
objectives of the project and the requirements to be met; 

• Step 2: Data and information collection: To develop a 
mathematical formulation of the problem, students need to 
gather the material properties, performance requirements, 
resource limits and other relevant information. Some of 
the design data and expressions may depend upon design 
variables that are identified in the next step; 

• Step 3: Identification/definition of design variables: The 
next step in the formulation process is to identify a set of 
variables that describes the system, called the design 
variables. These design variables should be independent 
of each other as much as possible; 

• Step 4: Identification of a criterion to be optimised: There 
can be many feasible designs for a system and some are 
better than others. Criteria are necessary to compare 
different designs for the same problem solution. The 
criterion must be a scalar function whose numerical value 
can be obtained once a design is specified. Such a 
criterion is usually called an objective function for the 
optimum design problem, which needs to be maximised or 
minimised depending on the problem’s requirements; 

• Step 5: Identification of constraints: All restrictions placed 
on a design are collectively called constraints. The final step 
in the formulation process is to identify all constraints and 
develop expressions for them. All of these and other 
constraints must depend on the design variables, since only 
then do their values change with different trial designs [4]. 

 
PARTICLE SWARM OPTIMISATION ALGORITHM  
 
The particle swarm optimisation (PSO) algorithm is a recently 
invented high performance optimiser that possesses several 
highly desirable attributes, including the fact that the basic 
algorithm is very easy to understand and implement. Particle 
swarm optimisation is a population-based stochastic optimisation 
technique that was developed by Drs Eberhart and Kennedy in 
1995. This concept was inspired by the social behaviour of 
birds flocking or fish schooling [5][6]. 
 
Particle swarm optimisation shares many similarities with 
evolutionary computation techniques, such as genetic algorithms. 
The system is initialised with a population of random solutions 
and searches for optima by updating generations. However, 
unlike genetic algorithms, particle swarm optimisation has no 
evolution operators like crossover and mutation. In PSO, the 
potential solutions, called particles, fly through the problem 
space following the current optimum particles. Each particle keeps 
track of its coordinates in the problem space, which are associated 
with the best solution (fitness) it has achieved so far (the fitness 
value is also stored). This value is called pbest. Another best value 
that is tracked by the particle swarm optimiser is the best value 
obtained so far by any particle among the neighbours of that 
particle. This location is called lbest. When a particle considers 
the population as its topological neighbours, the best value is a 
global best and is called gbest. The particle swarm optimisation 
concept consists of, at each time step, changing the velocity of 
(accelerating) each particle towards its pbest and lbest locations 
(local version of PSO). Acceleration is weighted by a random 
term, with separate random numbers being generated for 
acceleration towards pbest and lbest locations [7]. 

IMPLEMENTATION OF THE PARTICLE SWARM 
OPTIMISATION ALGORITHM 
 
As stated before, the particle swarm optimisation (PSO) 
algorithm simulates the behaviour of flocking birds. Imagine 
the following scenario: a group of birds are randomly searching 
for food in an area. There is only one piece of food in the area 
being searched. None of the birds knows where the food is; 
however, they do know how far away the food is in each search 
iteration. What is the best strategy for finding the food? An 
effective strategy is to follow the bird nearest the food.  
 
Particle swarm optimisation was learned from this scenario and 
used to solve optimisation problems. In PSO, each single 
solution is a bird in the search space and is called a particle. 
All of the particles have fitness values that are evaluated by  
the fitness function to be optimised. Each particle has  
velocities that direct particle flight. The particles fly through 
the problem space following the paths of current optimum 
particles.  
 
In PSO, instead of using genetic operators, each particle 
(individual) adjusts its flight according to its own flight 
experience and the experience of its companions. Each particle 
is treated as a point in a D-dimensional space. The ith particle 
is represented as XI = (xi1,xi2,…, xiD). The best previous 
position (the position giving the best fitness value) for the ith 
particle is recorded and represented as PI = (pi1,pi2,…, piD). The 
index of the best particle among all the particles in the 
population is represented by the symbol g. The rate of position 
change (velocity) for particle i is represented as VI = (vi1,vi2,…, 
viD). The particles are manipulated according to the following 
equations: 

vid = w * vid + c1 * rand ( ) * (pid – xid) + c2 * Rand ( ) * (pgd –xid) (1) 

xid = xid + vid                                       (2) 

where c1 and c2 are two positive constants, c1 and c2 are usually 
c1 =c2 =2, rand( ) and Rand( ) are two random functions in the 
range [0, 1], and w is the inertia weight. Equation (1) is used to 
calculate the particle’s new velocity according to its previous 
velocity and the distances from its current position from its 
own best experience (position) and the group’s best experience. 
The particle then flies towards a new position according to 
equation (2).  
 
The performance of each particle is measured according to a 
predefined fitness function related to the problem to be solved. 
The inertia weight w is employed to control the impact of the 
previous history of velocities on the current velocity. This 
influences the trade-off between global (wide-ranging) and 
local (nearby) exploration abilities of the flying points. A larger 
inertia weight w facilitates global exploration (searching new 
areas) while a smaller inertia weight tends to facilitate local 
exploration to fine-tune the current search area. A suitable 
selection of the inertia weight w can provide a balance between 
global and local exploration abilities and thus require fewer 
iterations to find the optimum.  
 
In this article, an analysis of the impact of this inertia weight, 
together with the maximum velocity allowed on particle swarm 
optimisation performance, is given, followed by experiments 
that illustrate the analysis and provide some insights into 
optimal selection of the inertia weight and the maximum 
velocity allowed.  
 
The pseudo code of the procedure is as follows: 
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For each particle  
Initialise particle 
END 
Do 
For each particle  
Calculate fitness value 
If the fitness value is better than the best fitness value 

(pBest) in history set current value as the new pBest 
End 
Choose the particle with the best fitness value of all 

the particles as the gBest 
For each particle 
Calculate particle velocity according equation (1) 
Update particle position according equation (2) 
End 
While maximum iterations or minimum error criteria 

is not attained 
 
Particles’ velocities on each dimension are clamped to a 
maximum velocity Vmax. If the sum of accelerations would 
cause the velocity on that dimension to exceed Vmax, which is 
a parameter specified by the user, the velocity on that 
dimension is then limited to Vmax. 
 
THE TEACHING METHOD 
 
The lectures are held in a optimum design laboratory. The 
teacher explains the concepts. Examples of the particle swarm 
optimisation algorithm are executed and projected 
demonstrating the behaviour of different optimum design 
problems. Time is left for students to run some examples with 
different parameters realising an interactive learning process. 
 
The optimum design laboratory serves active problem solving 
and is tightly attached to the theoretical material. Each student 
works on his/her own computer and solves the optimum design 
problems by himself/herself. The teacher sets up the problem 
and provides guidance. Students develop particle swarm 
optimisation algorithm programs or combine programs from 
given software. The results are then evaluated. Additional 
programs are also provided. The examination is held in the 
optimum design laboratory and consists of solving an optimum 
problem assigned by the teacher. The solution is accepted only 
if the program works correctly. 
 
DEMONSTRATION PROVIDES A BETTER 
UNDERSTANDING 
 
To verify particle swarm optimisation algorithm performance, 
three optimal design objective functions are considered. These 
are detailed below. 
 
Example 1: Simple Evaluation Function 
 
Equation (3) is a simple evaluation function for the particle 
swarm optimisation (PSO) algorithm as follows: 
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where ]2,1[][ max1min,1 −=xx , and ]2,1[][ max2min,2 −=xx . 
The genetic algorithm (GA) is used to evaluate the 
optimisation problem in [8]. The evaluation function is the 
driving force behind the GA. The evaluation function is called 
from the GA to determine the fitness of each solution string 
generated during the search. A simple example evaluation 
function is described in ref. [8], as follows: 
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To run the ga using this test function, either of the following 
function calls from MATLAB should be used: 
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where gaDemo1Eval.m is contains the evaluation function as 
given above. The defining parameters in [8] are as follows: 
population size=20, probability of crossover=0.6, probability of 
mutation=0.005.  
 
The parameters created for particle swarm optimisation (PSO) 
algorithm are list in Table 1. The simulation of search space via 
genetic algorithm is depicted in Figure 1. Figure 2 presents the 
fitness function performance via the PSO algorithm. 
 

Table 1: The parameters created for the PSO algorithm. 
 

Particle swarm optimisation (PSO) algorithm 
Population size 20 
Initial inertia weight 0.9 
Final inertia weight 0.2 
Iterations 50 
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Figure 1: Fitness variation in GA (example 1). 
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Figure 2: Fitness function performance via PSO (example 1). 
 
Table 2 provides a set of results for the evaluation function 
being optimised. Each algorithm is executed until the 
maximum value is found. As can be seen from Table 2, both of 
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the algorithms perform well at finding the optimal solution. 
Therefore, in terms of the metric for solution quality, there 
seems little to distinguish between the three algorithms. 
However, when the number of generations is taken into 
account, there are significant differences in the required 
number of iterations to obtain the solution. The PSO algorithm 
is shown to converge faster for function optimisation. Also, 
when comparing Figure 1 with Figure 2, the PSA algorithm 
achieves faster convergence than the genetic algorithm. 
 
Table 2: Comparison of particle swarm optimisation (PSO) 
algorithm and genetic algorithm (GA). 
 

Fitness f(x) x1 x2 Optimal 
Value 

Function GA PSO GA  PSO GA PSO 

Simple evaluation 
function 8 8 2 2 2 2 

 
Example 2: The Problem of Optimal Design 
 
The genetic algorithm was used for the design optimisation 
problem in Lindfield and Penny [9]. The objective function of 
engineering design problems is described below. 
 
A manufacturer wishes to produce a wall mounting container 
that consists of a hemisphere surmounted by a cylinder of fixed 
height. The height of the cylinder is fixed, but the common 
radius of the cylinder and hemisphere may vary between two 
and four. The manufacturer wishes to identify the radius value 
that maximises the container volume. This optimisation 
problem can be formulated by taking r as the common radius 
of the cylinder and hemisphere and h as the height of the 
cylinder. Taking h=2 units leads to the objective function in 
equation (6) as follows: 

( )
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≤≤

+=

rwhere

rrvMaximize ππ                      (6) 

The defining parameters using the genetic algorithm in 
Lindfield and Penny are as follows: population size=10, 
probability of crossover=0.6, probability of mutation=0.005 
[9]. The simulation results in the genetic algorithm are depicted 
as follows: a common radius of the cylinder r is equal to 
3.8667 and the objective function v is equal to 215.0202. The 
above genetic algorithm shows the algorithm for the design of 
optimisation problems, but there exists premature convergence 
and long convergence times. Figure 3 shows the objection 
function performance via the PSO algorithm. The simulation 
results in the PSO algorithm are depicted as follows: common 
radius of the cylinder r is equal to four and the objective 
function v is equal to 234.5723. 
 
Comparing the result in Figure 3 with the genetic algorithm, 
the PSO algorithm achieves faster convergence than that 
proposed in Lindfield and Penny [9]. The good performance 
obtained by the PSO algorithm shows improved behaviour over 
that employed in the genetic algorithm. The PSO algorithm is 
also shown to converge faster for function optimisation. 
 
CONCLUSION 
 
In this article, the particle swarm optimisation (PSO) algorithm 
was applied to three numerical test functions for optimal 
design. The PSO algorithm obtained good performance. The 

PSO algorithm also converged faster for function optimisation. 
In comparing the proposed particle swarm optimisation 
algorithm with the genetic algorithm, the particle swarm 
optimisation algorithm presented the following advantages: 
 
• Faster: the PSO algorithm can obtain the same quality 

results in significantly fewer fitness evaluations;  
• Cheaper: the PSO algorithm is intuitive and does not need 

specific domain knowledge to solve these numerical 
functions for optimisation;  

• Simpler: while possessing similar capabilities as the 
genetic algorithm, the much simpler implementation and 
reduced bookkeeping of the PSO algorithm is appealing.  
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Figure 3: Fitness function performance via PSO. 
 
Another reason that the particle swarm optimisation algorithm 
is attractive is that there are few parameters to adjust. The 
simpler the algorithm, the more people can take advantage of 
it! Eventually, it is hoped that the particle swarm optimisation 
approach will be helpful in optimising functions faster, 
cheaper, simpler and more effectively. 
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